US009438505B1

a2 United States Patent (10) Patent No.: US 9,438,505 B1
Zhou et al. 45) Date of Patent: Sep. 6, 2016
(54) SYSTEM AND METHOD FOR INCREASING (56) References Cited
CAPACITY IN ROUTER FORWARDING
U.S. PATENT DOCUMENTS
TABLES
6,862,281 B1* 3/2005 Chandrasekaran 370/392
(75) Inventors: Junlan Zhou, Sunnyvale, CA (US); 7,043,494 B1* 5/2006 Joshi et al. GOG6F 17/30961
Zhengrong Ji, Sunnyvale, CA (US) 7,986,696 B1* 7/2011 Miliavisky et al. 370/392

2007/0280258 Al* 12/2007 R_ajagopalan et al 370/395.3
(73) Assignee: Google Inc., Mountain View, CA (US) 2011/0038375 Al* 22011 Livetal oo 370/392

* cited by examiner
(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35 Primary Examiner — lan N Moore
U.S.C. 154(b) by 1077 days. Assistant Examiner — Brian T Le
(74) Attorney, Agent, or Firm — McDermott Will & Emery
(21) Appl. No.: 13/434,094 LLP
(22) Filed: Mar. 29, 2012 57 ABSTRACT

A multi-stage TCAM may include a plurality of tables on a

(51) Imt. ClL T : : :
pipeline and may store flow rules, including a key, an action,
HO4L 12/701 (2013.01) and a priority. The flow rule’s key, which may consist of a
HO4L 12/935 (2013.01) number of bits, may be divided into several buckets. For
HO4L 12/801 (2013.01) each bucket, a hardware table on the multi-stage TCAM may
HO4L 127743 (2013.01) be created. The first bucket may be used as a lookup key to
(52) US. CL the first table, and an output from this first table may be used
CPC HO4L 45/00 (2013.01); HO4L 45/7457 as a lookup key to the next table on the pipeline. Because the
(2013.01); HO4L 47/10 (2013.01); HO4L full flow key need not be stored in a single TCAM table, a
49/3009 (2013.01) capacity of the TCAM can be maximized with its width
(58) Field of Classification Search minimized.
None
See application file for complete search history. 21 Claims, 10 Drawing Sheets
150
M" Computer
o
P 160
Computer
1 182
Computer o pd
1 82 — - " - ~
o Router 144 Router |~
‘\-. Data 122 T 4412 / 148 N e
\ o ||/ ~
\ Instr 128 7/ N Computer
% | || Create buckets T / 164
N || Add rule T2 114
Delete rule X Al <
outpu
Computer) B2
184 | — —— Z ——
120 | .y
{output2, action
Processor 130

US 9,438,505 B1

Sheet 1 of 10

Sep. 6, 2016

U.S. Patent

121"
Jaindwo)

rA°]
Jeindwon

8l
9oy

09l
Jandwon

o¢

1 J0SS990.d

o | oz
]
(za
zindino ‘Jindino))
v P ajnl 8918
ZL ojn ppy
1 sj@jong ajeal)
8¢l syl
pindino| 19
v A
W zZzl eea
il J8Inoy

0

S

}

orL

130y

1 "Old

(44"
Joinoy

1212
Jaindwon

Zs8l
indwon

US 9,438,505 B1

Sheet 2 of 10

Sep. 6, 2016

U.S. Patent

¢ 614
cd
o1z td vie Zlz—
T Sn—- S
hnwn_ mQ#QmQ ND _.Don

\

£q°g°q¥qeqq'qq : Aay|

U.S. Patent Sep. 6, 2016 Sheet 3 of 10 US 9,438,505 B1

300 .
\’ Fig. 3
T1
312
S|
K A P
B1 output1
T2
31 4\
K A P
(output1,
B2) output2
316
B S
K A P
(output2, "
B3) action

US 9,438,505 B1

Sheet 4 of 10

Sep. 6, 2016

U.S. Patent

1) YipimuIiy =

(z9) wpimuin + (LIndino) yipmuiy

P S

§ I

zindino

(zg ‘1indino)

A

¢ AVOl

——— i€

 "Bi-

U.S. Patent Sep. 6, 2016 Sheet 5 of 10 US 9,438,505 B1

Bit
output representation
— 510
outputX 01
Width 1 outputY 10
outputZ 01
ot Bit
outpu '
p representation 550
Width 2 oulputx 0
outputY 1
outputZ 0

Fig. 5

US 9,438,505 B1

Sheet 6 of 10

Sep. 6, 2016

U.S. Patent

9 ‘B4
2 ndjno | (19 'q'e ndno)
v b |
~ 19
ZWYOL
v Ml
L Wvol

2jndino |(14 ‘qIndino)
odno ({18 ‘endino)
v |
T v9
TWYOL
v b
F NYOL —— 219

009

U.S. Patent

700

Sep. 6, 2016

Sheet 7 of 10

Fig. 7

Determine 710
minimum
configurable width
(W) of last
TCAM table T,

Identify sets of
candidate bits for
Bn

- 720

7

s = [bo~b])

US 9,438,505 B1

Determine next

s=p? yes smallest width of
(Candidates > TCAM table
empty?) Wat = (Wast)

770

)

|- 740

s =81
(Select candidate
set)

760

U.S. Patent

800

Sep. 6, 2016

Fig. 8

Sheet 8 of 10

Determine
minimum

configurable width

(WLy) of TCAM
table T,

- 810

Identify sets of
candidate bits for

8 = [by . by] = (BLe,

Bisz, ... Bn

- 820

=07
(Candidates
empty?)

US 9,438,505 B1

Determine next
yes smallest width of
TCAM table

Wit = (Win)

870

s =81
(Select candidate
sef)

,~ 840

U.S. Patent Sep. 6, 2016 Sheet 9 of 10 US 9,438,505 B1

Fig. 9
900 \A
- 910
Identify rule to add
Parse lookup key into |~ 920
buckets based on By, By, ...
B,
930
=T1
.| Determine lookup key and |- 940
| action for new rule for T
T=T include redundant
" lookup and action?
4
- 960
Create new entry
A
l,-970
Add rule

U.S. Patent Sep. 6, 2016 Sheet 10 of 10 US 9,438,505 B1

1000 Fig. 10

-1010
Identify rule (r) to remove

‘L 1020

.| Identify lookup and action |~1030
- forruler intable T

1060~

lookup/action with
any other rule in
table T?

"

L -1050
Remove rule r from table T

US 9,438,505 Bl

1
SYSTEM AND METHOD FOR INCREASING
CAPACITY IN ROUTER FORWARDING
TABLES

BACKGROUND OF THE INVENTION

A Ternary Content Addressable Memory (“TCAM”) is a
type of computer memory used in certain high speed search-
ing applications, such as routing information through a
network. It is designed such that it receives a data word (e.g.,
a key in a packet header) and performs parallel matches of
that word against every entry in the TCAM in a single clock
cycle. Each TCAM entry can store a flow rule comprising a
key, an action, and a priority.

TCAMs have been widely used in routers, switches, and
network security appliances of high speed networks to
implement packet flow rules, e.g., access control list
(“ACL”) call rules. They may be used for various applica-
tions, including packet filtering, forwarding, traffic load
balancing and shaping. However, TCAMS may be very
costly and may consume a significant amount of power.
Accordingly, TCAMs are often small and do not scale well
to large networks using thousands of flow rules.

TCAMs are often used in network routers. TCAMs may
have variable widths, where the width is inversely propor-
tional to a capacity of the TCAM. For example, a TCAM
may support 1000 entries of 72 bits, 512 entries of 144 bits,
or 256 entries of 288 bits. Traditionally, a router programs
each flow rule (comprising a key, priority, and an action) into
one TCAM entry, and configures the width of the TCAM to
be the maximum width of flow key. This results in minimal
capacity of the TCAM.

Some chip hardware includes a pipeline of tables. The
pipeline of tables may be used to perform a multi-stage
look-up of packets, in which the result of one table lookup
is used as part of lookup key to the next table in the pipeline.
For instance, Broadcam chips support a 3-stage pipeline:
VFP (Virtual local area network Field Processor), IFP (In-
gress Field Processor), and EFP (Egress Field Processor):
VFP generates an VRF; (VRF_id, dst_ip, dst_port, . . .) is
matched against IFP, which produces (egress_port, egress_
mod_id); (egress_port, src_ip, dst_ip, . . .) is matched
against EFP. Similarly, Dune Networking chips support a
4-stage pipeline: AC classification table (generating
VRF_id), LPM (Longest Prefix Match), IFP-stage-1 (using
(FEC_id, src_ip, dst_ip, etc.) as the lookup key), IFP-stage-
2, and EFP.

SUMMARY OF THE INVENTION

One aspect of the technology provides a method of
building a multi-stage router forwarding table, the method
comprising parsing a flow key into a plurality of buckets,
using a processor, wherein each of the plurality of buckets
includes one or more bits of the flow key, creating a plurality
of tables in a memory, each of the plurality of buckets
corresponding to one of the plurality of tables and each of
the plurality of tables including one or more entries, wherein
the plurality of tables are linked in a pipeline, and populat-
ing, using the processor, an entry in each of the plurality of
tables in the pipeline with a lookup key and a corresponding
output, the lookup key comprising an output from a preced-
ing table and the bits from the bucket corresponding to the
table. A last one of the plurality of tables in the pipeline may
include an action for forwarding a data packet. Widths of
one or more of the plurality of tables may be reduced
according to variety of different methods.

w

20

30

40

45

50

2

Parsing the flow key into the plurality of buckets may
comprise determining a minimum configurable width of a
last one of the plurality of tables in the pipeline, identifying
sets of bits in the flow key as candidates for a last bucket, and
determining whether any of the candidate sets of bits, when
combined with an output from a preceding table, have a
combined width less than the minimum configurable width
of the last table in the pipeline. If a given candidate set of
bits, when combined with the output from the preceding
table, has a combined width less than the minimum con-
figurable width of the last table in the pipeline, the given
candidate set of bits may be grouped into the last bucket. If
no candidate set of bits, when combined with the output
from the preceding table, has a combined width less than the
minimum configurable width of the last table in the pipeline,
then a next smallest configurable width of the last table may
be determined, and it may be further determined whether
any of the candidate sets of bits, when combined with the
output from the preceding table, have a combined width less
than the next smallest configurable width of the last table in
the pipeline.

Another aspect of the technology provides a method for
increasing capacity in a router forwarding table, comprising
implementing one or more multi-stage TCAMs in a memory,
the one or more multi-stage TCAMs comprising a plurality
of tables linked in a pipeline, an input for each table in the
pipeline including an output from a preceding table and a set
of bits from a flow key, and an output for a last of the
plurality of tables in the pipeline comprising an action for
forwarding a data packet. The method may further comprise
reducing, using a processor, a width of the one or more
multi-stage TCAMs. Reducing the width of the one or more
multi-stage TCAMs may comprise reducing a width of the
output from the preceding table and reducing a width of the
set of bits from the flow key, reducing a number of different
outputs in the table, and reducing a number of bits used to
represent the different outputs in the table, and/or aggregat-
ing two or more flow rules having different keys and the
same output into one flow rule. This reducing may be
performed periodically.

Yet another aspect of the technology provides a router,
comprising a storage area storing one or more multi-stage
TCAMs, the one or more multi-stage TCAMs comprising a
plurality of tables linked in a pipeline, an input for each table
in the pipeline including an output from a preceding table
and a set of bits from a flow key, and an output for a last of
the plurality of tables in the pipeline comprising an action
for forwarding a packet. The multi-stage TCAMs may
further comprise an input adapted to receive packets includ-
ing routing information, and a processor configured to
sequentially match portions of the routing information
against each of the plurality of tables linked in the pipeline,
and forward the packet based on the action in the last table
in the pipeline.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a system diagram according to an aspect of the
technology.

FIG. 2 is a pictorial diagram of flow key buckets accord-
ing to an aspect of the technology.

FIG. 3 illustrates a multi-stage TCAM according to an
aspect of the technology.

FIG. 4 illustrates a stage of a multi-stage TCAM accord-
ing to an aspect of the technology.

FIG. 5 illustrates reduction of a width of a stage of a
multi-stage TCAM according to an aspect of the technology.

US 9,438,505 Bl

3

FIG. 6 illustrates a reduction of consumed hardware
resources in a stage of a multi-stage TCAM according to an
aspect of the technology.

FIG. 7 illustrates a method of minimizing a width of a last
stage of a multi-stage TCAM according to an aspect of the
technology.

FIG. 8 illustrates a method of minimizing a width of a
preceding stage of a multi-stage TCAM according to an
aspect of the technology.

FIG. 9 illustrates a method of adding a rule to a TCAM
according to an aspect of the technology.

FIG. 10 illustrates a method for deleting a rule from the
router according to an aspect of the technology.

DETAILED DESCRIPTION

A multi-stage TCAM may include a plurality of tables on
a pipeline and may store flow rules, including a key, an
action, and a priority. The flow rule’s key, which may consist
of'a number of bits, may be divided into several buckets. For
each bucket, a hardware table on the multi-stage TCAM may
be created. The first bucket may be used as a lookup key to
the first table, and an output from this first table may be used
as a lookup key to the next table on the pipeline. For
example, a lookup key to the first table (T,) may be the first
bucket (B,), and a corresponding action may be outputl. The
lookup key to the next table (T,) may be (output,, B,), and
so on, until the last table (T,,), which has a lookup key of
(output,, ,, By). Because the full flow key need not be stored
in a single TCAM table, a capacity of the TCAM can be
maximized with its width minimized.

FIG. 1 illustrates an exemplary network 150 that joins a
plurality of client computers 160, 162, 164, 182, 184. The
network 150 includes a plurality of routers 142, 144, 146,
148. Each router may include a processor 130 and a memory
120 coupled to the processor 130. Each router 142-148 may
further include one or more input ports for receiving data
from other routers or computing devices, such as packets or
program updates. Similarly, each router 142-148 may have
one or more output ports for transmitting data through the
network 150.

Each router 142-148 may also include one or more packet
forwarding tables, some or all of which may be multi-staged.
For example, in the router 144, TCAM 110 includes tables
112, 114, and 116. Further, each router may have a processor
and a memory, such as memory 120 of the router 144, which
stores data 122 and instructions 128 (e.g., for populating
multi-stage TCAMs, adding rules, deleting rules, etc.).
While the TCAM 130 is shown as being stored separately
from memory 120, it should be understood that the TCAM
110, data 122, and instructions 128 may all be stored in the
same medium.

The memory 120 stores information accessible by pro-
cessor 130, including instructions 128, and data 122 that
may be executed or otherwise used by the processor 130.
The memory 120 may be of any type capable of storing
information accessible by the processor, including a com-
puter-readable medium, or other medium that stores data
that may be read with the aid of an electronic device, such
as a hard-drive, memory card, ROM, RAM, DVD or other
optical disks, as well as other write-capable and read-only
memories. Systems and methods may include different com-
binations of the foregoing, whereby different portions of the
instructions and data are stored on different types of media.

The instructions 128 may be any set of instructions to be
executed directly (such as machine code) or indirectly (such
as scripts) by the processor 130. For example, the instruc-

15

35

40

45

50

55

4

tions may be stored as computer code on the computer-
readable medium. In that regard, the terms “instructions”
and “programs” may be used interchangeably herein. The
instructions may be stored in object code format for direct
processing by the processor, or in any other computer
language including scripts or collections of independent
source code modules that are interpreted on demand or
compiled in advance. Functions, methods and routines of the
instructions are explained in more detail below.

The data 122 may be retrieved, stored or modified by
processor 130 in accordance with the instructions 128. For
instance, although the system and method is not limited by
any particular data structure, the data may be stored in
computer registers, in a relational database as a table having
a plurality of different fields and records, XML documents
or flat files. The data may also be formatted in any computer-
readable format. The data may comprise any information
sufficient to identify the relevant information, such as num-
bers, descriptive text, proprietary codes, references to data
stored in other areas of the same memory or different
memories (including other network locations) or informa-
tion that is used by a function to calculate the relevant data.

The processor 130 may be any conventional processor,
such as processors in commercially available routers. Alter-
natively, the processor may be a dedicated controller such as
an ASIC or other hardware-based processor. The processor
and memory may actually comprise multiple processors and
memories that may or may not be stored within the same
physical housing. For example, memory may be a hard drive
or other storage media located in a server farm of a data
center. Accordingly, references to a processor, memory, or
computer will be understood to include references to a
collection of processors, memories or computers that may or
may not operate in parallel.

The computers 160, 162, 164, 182, 184 may be any of a
variety of computing devices, including personal digital
assistants (PDAs), laptops, tablet PCs, netbooks, PCs, etc.
These devices may be connected to the network 150 via a
wired connection, such as through a modem, or wirelessly,
such as through an access point in communication with one
of the routers 142-148. Although only a few computers are
depicted in FIG. 1, it should be appreciated that a typical
system can include a large number of connected computers,
with each different computer being at a different node of the
network 150. The network, and intervening nodes, may
comprise various configurations and protocols including the
Internet, World Wide Web, intranets, virtual private net-
works, wide area networks, local networks, private networks
using communication protocols proprietary to one or more
companies, Ethernet, WiFi (such as 802.11, 802.11b, g, n, or
other such standards), and HTTP, and various combinations
of the foregoing. Such communication may be facilitated by
any device capable of transmitting data to and from other
computers, such as modems (e.g., dial-up, cable or fiber
optic) and wireless interfaces.

According to one aspect of the invention, each TCAM
table 112-116 may comprise a set of TCAM entries. A width
of the entries in these TCAM tables may be configurable,
and inversely proportional to a capacity of the table. For
example, a table may support 1000 entries of 72 bits, 512
entries of 144 bits, or 256 entries of 288 bits. Each entry may
store a flow rule. The rule includes a key (K), an action (A),
and a priority (P). Each rule is stored as a TCAM entry in
order of priority. According to one example, highest priority
rules may be stored at a lowest indexed entry.

As packets flow from, for example, computer 182 to
computer 162, information in the packets is used to deter-

US 9,438,505 Bl

5

mine how the packet should be routed. For example, router
142 may use packet information to determine that the next
hop should be router 144, and router 144 receives the packet
and determines that the next hop should be router 148. One
mechanism used by the routers (e.g., router 144) to make
such determinations is the TCAM 110. For example, a
header of an incoming packet may include a series of bits,
which may be compared against a lookup key of the multi-
stage TCAM 110. An output of the TCAM 110 may indicate
an action to be taken, directing the packet to the next hop.

In order to maximize TCAM capacity, systems and meth-
ods according to one aspect of the present technology
provide for efficiently building and populating multi-stage
TCAMs, as well as maintaining/updating such multi-stage
TCAMs. In addition, the multi-stage TCAM tables may be
dynamically configured to minimize their entry width, and
therefore maximize capacity.

FIG. 2 is a pictorial diagram of flow key buckets accord-
ing to an aspect of the technology. A flow key may be
included, for example, in a header of a packet to indicate a
destination for the packet. The key includes a number of bits
by-b,. These bits may be grouped into “buckets” B1 (212),
B2 (214), and B3 (216). For example, as shown, bits by-b,
may be grouped in bucket B1, bits b;-bs may be grouped in
bucket B2, and bits bs-b, may be grouped in bucket B3. It
should be understood that any number of buckets 212-216
may be used. Additionally, it should be understood that any
number of bits may be assigned to a given bucket. For
example, a first bucket may include one bit, while a second
bucket includes 5 bits, etc.

Each bucket may correspond to a table in a multi-stage
TCAM. For example, FIG. 3 illustrates a multi-stage TCAM
300 according to an aspect of the technology. The multi-
stage TCAM may be located on a router, such as the router
144 of FIG. 1. The multi-stage TCAM 300 includes three
tables 312-316, corresponding to each of the buckets 212-
216 in FIG. 2. These tables 312-316 may be linked in a
pipeline, such that table 314 follows table 312, and table 316
follows table 314.

Each TCAM table 312-316 may be structured as a for-
warding table including a key, an action, and a priority.
While it should be understood that other structures are
possible for the TCAM stages, each stage may be referred to
as a “table” hereon for ease of reference, and “stage” and
“table” may be used interchangeably herein. The bits in
bucket B1 may be listed as a lookup key in the first TCAM
stage 312, and a corresponding output (outputl) may be
listed as the action. The outputl from the first TCAM stage
312 may be used with the bits from the second bucket B2 as
a lookup key to the second TCAM stage 314. Thus, for
example, the second TCAM stage 314 may include a lookup
key (outputl, B2), and a corresponding action output2.
Similarly, the output from the second TCAM stage 314,
along with the third bucket, may be used as a lookup key to
the third TCAM stage 316. For example, TCAM stage 316
may list (output2, B3) as a lookup key, with a corresponding
action. If the TCAM stage 316 is the last stage in the
pipeline, the action may indicate a forwarding behavior for
the packet. For example, the action may determine the next
hop the packet will travel from the router.

Using a multi-stage TCAM, such as the TCAM 300, may
facilitate conservation of resources as compared to a con-
ventional TCAM. For example, because an entire flow key
need not be stored as a lookup in the TCAM, a width of the
TCAM may be reduced. Because a width of the TCAM may
be reduced, a capacity of the TCAM may be increased.

10

15

20

25

30

35

40

45

50

55

60

65

6

The capacity of the multi-stage TCAM 300 may be
maximized if the flow keys are parsed into buckets effi-
ciently. Accordingly, several rules may provide for effi-
ciently parsing the flow keys and creating the multi-stage
TCAMs. These rules may be implemented as instructions or
software modules executable by the processor 130, or may
be used as guidelines for writing such instructions.

A first rule is illustrated in FIG. 4, which depicts a stage
(e.g., table 314) of a multi-stage TCAM (e.g., TCAM 300).
As shown, a lookup key listed in the table 314 is (outputl,
B2). This key has a given width, for example, determined by
a total number of bits therein. The width of the key (outputl,
B2) may be minimized if the width of outputl and the width
of' B2 are each minimized. Moreover, if the width of the key
(outputl, B2) is minimized, a width of the TCAM table 314
may potentially be reduced. For example, if the width of the
key (outputl, B2) was greater than a width of any other key
in the table, reducing the width of the key would enable a
reduced width of the entire table. As a further example, if the
widths of each of the keys in the table 314 were reduced in
a similar manner to the key (outputl, B2), the width of the
table 314 could also be reduced. In any of these instances of
reducing the width of the table 314, the capacity of the table
314 may be increased.

A second rule is illustrated in FIG. 5, which depicts
reduction of a width of a stage of a multi-stage TCAM
according to an aspect of the technology. FIG. 5 shows two
tables 510, 550. Each table includes a listing of outputs (e.g.,
outputX, outputY, outputZ) which may be the outputs cor-
responding to various lookup keys listed in one stage of a
multi-stage TCAM. Each table 510, 550 also includes a bit
representation of the output. These bit representations are
simplified for ease of explanation. As shown in the table 510,
outputX and outputZ are both represented by bits 01, while
outputY is represented by bits 10. Because there are effec-
tively only two different outputs (01 and 10), these outputs
may be represented by one bit (0 or 1) as shown in table 550.

A third rule is illustrated by FIG. 6, which depicts a
reduction of consumed hardware resources in a stage of a
multi-stage TCAM according to an aspect of the technology.
According to this rule, two flow rules having different keys
may be aggregated into one flow rule in a router forwarding
table if they produce the same output. For example, as
shown, a TCAM 600 includes a first stage 612 and a second
stage 614. The second stage 614 includes at least two flow
rules, comprising lookup keys with corresponding outputs.
Although the two lookup keys (output a, B1) and (output b,
B1) are different, they correspond to the same output c.
These two flow rules may thus be aggregated into a single
flow rule. As shown in TCAM stage 614, the two keys of
stage 614 are replaced with a single key (output a,b, B1),
which corresponds to the output c. In this regard, a capacity
of the TCAM 600 is increased by freeing entries in its
individual stages.

Based on these rules, minimum widths of the stages in a
multi-stage TCAM may be determined, and flow keys may
be efficiently parsed into buckets accordingly. For example,
according to one aspect of the technology, a minimum width
of the last stage in the TCAM may be determined first.
Minimum widths of each preceding TCAM stage in the
pipeline may then be determined until a width of a first stage
in the TCAM is determined. Once the minimal widths of the
TCAM stages are determined, a grouping of bits of a flow
key into buckets may be determined.

FIG. 7 illustrates a method 700 of minimizing the width
of the last table in a multi-stage TCAM according to an
aspect of the technology. To achieve this, a minimum width

US 9,438,505 Bl

7

(W,,) of the table (T,) may be determined. It is then
determined whether a bucket (B,)), which corresponds to the
last stage, exists such that a total width of a lookup key in
the last stage is less than or equal to the determined
minimum width of the table. If no such bucket exists, a next
smallest configurable width for the last table is determined,
and a similar analysis is performed. This process is
explained in further detail below.

In block 710, a TCAM stage’s minimum configurable
width (W,,)) is determined. For example, the minimum
configurable width may be set by a manufacturer and read by
a processor in communication with the TCAM.

In block 720, a set of candidate bits to be grouped into a
last bucket B,, corresponding to the last table T, of the
TCAM, is identified. For example, the candidate bits may
include all or some of the bits of a flow key, such as the last
four bits as a first set, the last three bits as a second set, the
last two bits as a third set, etc. According to one example, the
candidate sets of bits for the bucket B, may be defined
as s=(by-b,), where b,-b, represent all bits in the flow key.

In block 730, it may be determined whether the candidate
sets of bits are empty. For example, if all the candidate sets
of bits have been analyzed, s=0 may return true. However,
if there are candidate sets that have not yet been analyzed,
a set may be selected in block 740 and removed from the
candidate sets.

In block 750, it is determined whether a total width of
(output,_;, B,) is less than or equal to the minimum con-
figurable width W |, where the selected candidate set of bits
is used for B,,. If this returns true, B, is set to the selected
candidate set of bits (block 760).

However, if the condition of block 750 returns false, the
method 700 returns to block 730, where it is determined
whether the any candidate sets of bits remain for analysis
and another candidate set is selected for analysis (block
740).

If all the candidate sets of bits have been analyzed, and
none of the candidate values for B, have a width that, when
combined with the width of output,,_,, are smaller than or
equal to the minimum configurable width W, of the table,
a next smallest possible width of the TCAM stage is
determined (block 770). Accordingly, the process of identi-
fying candidate sets of bits and determining whether any of
the sets of bits, when grouped in the last bucket B, satisfy
the condition (output,_ ,, B,)<=W, ;, where W, is now the
next smallest configurable width of the table T,,. The method
700 may continue this progression of analyzing candidate
sets of bits for the bucket B,, for each possible width of the
table T, greater than the minimum configurable width until
a value for B,, is identified.

Buckets for each TCAM table preceding the last table T,
may be consecutively determined in a manner similar to the
method 700. For example, bucket B, ; may be determined
for a minimum width of table T, ;, bucket B, , may be
determined for a minimum width of table T,, ,, and so on. A
method 800 of determining the bucket (B;) and minimum
width (W) of a TCAM stage table (T,) preceding the last
table in the pipeline is illustrated in FIG. 8. This method 800
may be performed, for example, after determining the
widths of T;,,, T;,5, - . . Tae

In block 810, a minimum configurable width (W,) of a
TCAM table T, is determined. For example, the minimum
configurable width may be determined in a manner similar
to that described above in connection with block 710 of FIG.
7.

In block 820, a set of candidate bits to be grouped into a
bucket B,, corresponding to the table T,, is identified. In

10

15

20

25

30

35

40

45

50

55

60

65

8

contrast to the block 720 of FIG. 7, however, the candidate
sets of bits may include only those bits which have not been
already been assigned to buckets B;,,, B;,,, etc., corre-
sponding to TCAM tables T;,,, T;,,,, etc. For example, if
the table T, immediately precedes the last table T, in the
pipeline, and the last 3 bits of an 8-bit key are assigned to
the bucket B,, only sets of bits including the first five bits
of the key may be identified as candidates for B;. According
to one example, the candidate sets of bits for the bucket B,
may be defined as s=(b,~b,)-(B;.;, B;.2 - - . By), where
bo~b, represent all bits in the flow key, and (B,,,,
B; ., - . . By) represent the bits already grouped into buckets
for subsequent tables in the pipeline.

In block 830, it may be determined whether the candidate
sets of bits are empty. For example, if all the candidate sets
of bits have been analyzed, s=0 may return true. However,
if there are candidate sets that have not yet been analyzed,
a set may be selected in block 840 and removed from the
candidate sets.

In block 850, it is determined whether a total width of
(output;_,, B;) is less than or equal to the minimum con-
figurable width W, ,, where the selected candidate set of bits
is used for B;. If this returns true, B; is set to the selected
candidate set of bits (block 860). However, if the condition
of block 850 returns false, the method 800 returns to block
830, where it is determined whether any candidate sets of
bits remain for analysis, and if so, another candidate set is
selected for analysis (block 840).

If all the candidate sets of bits have been analyzed, and
none of the candidate values for B; have a width that, when
combined with the width of output; ,, are smaller than or
equal to the minimum configurable width W, , of the TCAM
stage, a next smallest possible width of the table T, is
determined (block 870). Accordingly, the process of identi-
fying candidate sets of bits and determining whether any of
the sets of bits, when grouped in the bucket B,, satisty the
condition (output; ,, B;)<=W,,, where W, is now the next
smallest width of the table T;. The method 800 may con-
tinue this progression of analyzing candidate sets of bits for
the bucket B; for each possible width of the table T, greater
than the minimum configurable width until a value for B; is
identified.

Periodically, the multi-stage TCAM may need to be
updated, for example, to add a flow rule or delete a flow rule.
To maintain efficiency of the multi-stage TCAM (e.g., to
maximize capacity and minimize width of each table to the
extent possible), rules may be added or deleted according to
a given method.

FIG. 9 illustrates an example method 900 of adding a rule
to a multi-stage TCAM according to an aspect of the
technology. The multi-stage TCAM may include tables T,
T,, ... T,. Widths of each of these tables and a number of
bits in each corresponding bucket B, B,, . . . B, may have
been determined, for example, according to the methods 700
and 800 of FIGS. 7-8.

In block 910, a rule to be added to the multi-stage TCAM
is identified. The rule may include a key, an action, and a
priority.

In block 920, the key of the rule may be parsed into
buckets based on existing buckets B, B,, . . . B,, corre-
sponding to table stages T,, T,, . . . T,,. For example, if there
are three stages in the pipeline (T, T,, T;) and each of
buckets B, B,, B; includes 3 bits, the lookup key of the rule
to be added may be parsed to group the first three bits in B,
the next three bits in B,, and the last three bits in B;. It
should be understood that the number of buckets and the
number of bits assigned to each bucket are merely exem-

US 9,438,505 Bl

9

plary, and that lookup keys may be longer or shorter than 9
bits and that more or fewer buckets or bits per bucket may
be designated.

In block 930, a first table T, in the multi-stage TCAM is
selected. The table T, may be, for example, the first or last
table in the pipeline. This table T, may be defined as T for
purposes of the remaining blocks in the method 900.

In block 940, a lookup key and action for the new rule
may be determined for the table T. For example, if table T
is the first table in the pipeline, the lookup key may be B,
and the action may be outputl. If table T is not the first table
in the pipeline (e.g., T;), the lookup key may be (output, _,,
B;) and the action may be output;,.

In block 950, it may be determined whether the table T
includes a lookup key and action that would render the new
rule’s lookup key and action redundant. For example, the
lookup key for the new rule may be “100” and the action
may be “11.” If another rule in the table T includes lookup
key “100” and action “11,” the new rule may be considered
redundant for table T.

If the new rule is determined to be redundant for table T,
no new entry is created in the table T. The method 900
proceeds to block 980, where T is defined as a next table in
the pipeline (e.g., T,), and the method repeats from block
940 to determine whether a new entry need be created in that
next table.

If the new rule is determined to not be redundant, how-
ever, a new entry for the rule may be created in the table T
(block 960). The new rule’s lookup key and action for the
table T may thus be added in the new entry (block 970). The
next table may then be analyzed to determine whether a new
entry need be created, and this process may iterate until all
the tables in the pipeline have been analyzed.

FIG. 10 illustrates a method 1000 for deleting a rule from
the multi-stage TCAM according to an aspect of the tech-
nology. Similar to the method 900 of FIG. 9, the method
1000 visits each table T, T,, . . . T, of the multi-stage
TCAM. However, rather than determining whether new
entries need be created, the method 1000 determines
whether entries may be deleted.

In block 1010, a rule (e.g., rule “r”’) to be removed is
identified. The rule r may include a key and an action. In
block 1020, a first table of the multi-stage TCAM is selected.
For example, a first table T, in the pipeline may be selected
first and defined as T for purposes of the remainder of the
method 1000.

In block 1030, a lookup and action for the rule r is
identified in the table T. For example, if table T is the first
table in the pipeline, the lookup key may be B, and the
action may be output,. If table T is not the first table in the
pipeline (e.g., T,), the lookup key may be (output,_,, B;)
and the action may be output;.

In block 1040, it may be determined whether the rule r
shares its lookup key and action with any other rules in table
T that are not to be removed. For example, to minimize
consumption of resources, two flow rules may have been
aggregated into one table entry, as explained above in
connection with the third rule (FIG. 6). If such is the case,
no action may be taken with respect to the entries in table T,
and a next table in the pipeline may be selected in block
1060. If, however, the rule r does not share its lookup key
and action with any other rule in the table T, the entry for the
lookup and action for the rule r may be deleted from the table
T (block 1050). This process of determining whether the rule
r shares its lookup key and action may be reiterated for each
table in the multistage.

10

15

20

25

30

35

40

45

50

55

60

10

It should be understood that the operations involved in the
above methods need not be performed in the precise order
described. Rather, various operations may be handled in a
different order or simultaneously, and operations may be
added or omitted.

The above described methods may be implemented as
software (e.g., executable code stored in memory 120) and
executed by a processor in the router. Alternatively, the
software may be stored remotely. This software application
may be automatically run, for example, each time a flow rule
is to be added to or removed from the router.

The above-described methods may produce a significant
cost savings. Particularly, less hardware resources may be
consumed, because the TCAMs are used more efficiently.
Further, because the width and capacity of each TCAM may
be automatically configured, updating of the router to add or
delete rules may be done quickly and efficiently.

Although the present invention has been described with
reference to particular embodiments, it should be understood
that these examples are merely illustrative of the principles
and applications of the present invention. For example, it
should be understood that the described system and method
may be implemented over any network, such as the Internet,
or any private network connected through a router. For
example, the network may be a virtual private network
operating over the Internet, a local area network, or a wide
area network. Additionally, it should be understood that
numerous other modifications may be made to the illustra-
tive embodiments. For example, the steps taken to derive the
lowest cost number of moves within the TCAM may be
modified. However, these and that other arrangements may
be devised without departing from the spirit and scope of the
present invention as defined by the appended claims.

The invention claimed is:

1. A method for routing a data packet received at a router,
comprising:

accessing a multi-stage forwarding table in memory, the

multi-stage forwarding table including a plurality of

tables linked in a pipeline, each table of the plurality of

tables including a plurality of entries, and each entry

includes a lookup key and a corresponding output;

wherein:

respective lookup keys of entries of a first table of the
plurality of tables include bits from flow keys
selected from a first set of flow key bit positions
belonging to a plurality of sets of flow key bit
positions,

respective lookup keys of entries in each of at least one
remaining table of the plurality of tables include the
output of an entry of an immediately preceding table
and bits from flow keys selected from respective
corresponding additional sets of flow key bit posi-
tions belonging to the plurality of sets of flow key bit
positions,

respective outputs in the entries of a last table of the
plurality of tables include respective actions for
forwarding a data packet,

each set of flow key bit positions includes bit positions
that do not overlap with bit positions in any other set
of flow key bit positions belonging to the plurality of
sets of flow key bit positions;

receiving a data packet at an input port of the router, the

data packet including routing information of the data
packet;

obtaining a received data packet flow key based on the

routing information included in the received data
packet;

US 9,438,505 Bl

11

matching bits in the first set of flow key bit positions in the
received data packet flow key to a lookup key in the
first table of the plurality of tables;

sequentially for each remaining table:

matching a combination of bits in a corresponding set
of flow key bit positions in the received data packet
flow key and an output from an entry in an imme-
diately preceding table with lookup keys of entries in
the respective table to determine a respective output;
and

routing the data packet based on forwarding information

included in determined output of the last table.

2. The method of claim 1, further comprising reducing a
width of at least one table of the plurality of tables.

3. The method of claim 2, wherein reducing a width of at
least one table of the plurality of tables includes reducing a
width of one of the remaining tables of the plurality of tables
by reducing a width of an output in an entry of the imme-
diately preceding table, and reducing a width of the lookup
key in an entry in the one of the remaining tables that
includes the output of the immediately preceding table.

4. The method of claim 2, wherein reducing the width of
at least one table of the plurality of tables includes reducing
a number of outputs in the at least one table of the plurality
of tables, and reducing a number of bits used to represent a
reduced number of outputs in the at least one table.

5. The method of claim 2, wherein reducing the width of
at least one table of the plurality of tables includes aggre-
gating two or more different lookup keys having a same
output into a single lookup key.

6. The method of claim 1, further comprising:

determining a minimum configurable width of the last

table of the plurality of tables;
setting a configurable width of the last table of the
plurality of tables to the minimum configurable width;

identifying candidate sets of flow key bit positions;

determining a first candidate set of flow key bit positions
from the candidate sets of flow key bit positions such
that a first sum of a width of the first candidate set of
flow key bit positions and a width of an output from an
immediately preceding table is less than the configu-
rable width of the last table of the plurality of tables;

using the first candidate set of flow key bit positions as the
set of flow key bit positions corresponding to the last
table of the plurality of tables.
7. The method of claim 6, further comprising, if the first
candidate set of flow key bit positions cannot be determined
for the configurable width that is set to the minimum
configurable width of the last table:
repeatedly increasing the configurable width of the last
table of the plurality of tables until one candidate set of
flow key bit positions, from the candidate sets of flow
key bit positions, can be determined such that a sum of
a width of the one candidate set of flow key bit
positions and a width of an output from the immedi-
ately preceding table is less than a current configurable
width of the last table.
8. The method of claim 6, further comprising:
determining a minimum configurable width of a second
table of the plurality of tables, the second table imme-
diately preceding the last table of the plurality of tables;

excluding the first candidate set of flow key bits from the
candidate sets of flow key bits to create a remainder
candidate sets of flow key bits;

determining a second candidate set of flow key bit posi-

tions from the remainder candidate sets of flow key bit
positions such that a second sum of a width of the

10

15

20

25

30

35

40

45

50

55

60

65

12

second candidate set of flow key bit positions and a
width of an output from an immediately preceding table
is less than the minimum configurable width of the
second table of the plurality of tables; and

using the second candidate set of flow key bit positions as
the set of flow key bit positions corresponding to the
second table of the plurality of tables.

9. The method of claim 1, further comprising:

identifying a new rule to be added to the multi-stage
forwarding table, the new rule including a new flow key
and a new action;

dividing the new flow key into a plurality of proposed
lookup key bits, each of the plurality of proposed
lookup key bits including bits from the new flow key
selected from a corresponding set of flow key bit
positions of the plurality of sets of flow key bit posi-
tions;

for each of the plurality of tables:
creating a new entry having a new lookup key and a

new output, the new lookup key including the
respective proposed lookup key bits, if the respective
proposed lookup key bits are not found in a lookup
key in any of the respective entries,

wherein creating a new entry in the last table of the
plurality of tables includes storing the new action
included in the new rule as the new output of the new
entry in the last table.

10. The method of claim 1, further comprising:

identifying a rule to be deleted from the multi-stage
forwarding table, the rule including candidate flow key
and a candidate action;

dividing the candidate flow key into a plurality of pro-
posed lookup key bits, each of the plurality of proposed
lookup key bits including bits from the candidate flow
key selected from respective corresponding set of flow
key bit positions;

for each of the plurality of tables:
identifying an entry having a lookup key that includes

the respective proposed lookup key bits;
deleting the identified entry if the lookup key of the
identified entry is not shared with another rule.
11. A network router comprising:
a memory storing a multi-stage forwarding table, the
multi-stage forwarding table including a plurality of
tables linked in a pipeline, each table of the plurality of
tables including a plurality of entries, and each entry
including a lookup key and a corresponding output,
wherein:
respective lookup keys of entries of a first table of the
plurality of tables include bits from flow keys
selected from a first set of flow key bit positions
belonging to a plurality of sets of flow key bit
positions,

respective lookup keys of the entries in each of the
remaining tables of the plurality of tables include the
output of an entry of an immediately preceding table
and bits from flow keys selected from respective
corresponding additional sets of flow key bit posi-
tions belonging to the plurality of sets of flow key bit
positions,

respective outputs in the entries of a last table of the
plurality of tables include respective actions for
forwarding a data packet, and

each set of flow key bit positions includes bit positions
that do not overlap with bit positions in any other set
of flow key bit positions belonging to the plurality of
sets of flow key bit positions;

US 9,438,505 Bl

13

an input port configured to receive a data packet from a
network, the data packet including routing information;
and

a processor coupled to the memory and to the input port
configured to:
obtain a received data packet flow key based on the

routing information included in the received data
packet;
match bits in the first set of flow key bit positions in the

5

received data packet flow key to a lookup key in the 10

first table of the plurality of tables;
sequentially for each remaining table:
match a combination of bits in a corresponding set of
flow key bit positions in the received data packet
flow key and an output from an entry in an
immediately preceding table with lookup keys of
entries in the respective table to determine a
respective output; and
route the data packet based on forwarding information
included in determined output of the last table.

12. The router of claim 11, wherein the processor is
further configured to reduce a width of at least one table of
the plurality of tables.

13. The router of claim 12, wherein the processor is
further configured to reduce a width of one of the remaining
tables of the plurality of tables by reducing a width of an
output in an entry of the immediately preceding table, and
reducing a width of the lookup key in an entry in the one of
the remaining tables that includes the output of the imme-
diately preceding table.

14. The router of claim 12, wherein the processor is
further configured to reduce a number of outputs in the at
least one table of the plurality of tables, and reduce a number
of bits used to represent a reduced number of outputs in the
at least one table.

15. The router of claim 12, wherein the processor is
further configured to aggregate two or more different lookup
keys having a same output into a single lookup key.

16. The router of claim 11, wherein the processor is
further configured to:

determine a minimum configurable width of the last table

of the plurality of tables;

set a configurable width of the last table of the plurality of

tables to the minimum configurable width;
identify candidate sets of flow key bit positions;
determine a first candidate set of flow key bit positions
from the candidate sets of flow key bit positions such
that a first sum of a width of the first candidate set of
flow key bit positions and a width of an output from an
immediately preceding table is less than the configu-
rable width of the last table of the plurality of tables;

use the first candidate set of flow key bit positions as the
set of flow key bit positions corresponding to the last
table of the plurality of tables.

17. The router of claim 16, wherein the processor is
further configured to, if the first candidate set of flow key bit
positions cannot be determined for the configurable width
that is set to the minimum configurable width of the last
table:

repeatedly increase the configurable width of the last table

of the plurality of tables until one candidate set of flow
key bit positions, from the candidate sets of flow key bit
positions, can be determined such that a sum of a width

15

20

25

50

60

14

of the one candidate set of flow key bit positions and a
width of an output from the immediately preceding
table is less than a current configurable width of the last
table.
18. The router of claim 16, wherein the processor is
further configured to:
determine a minimum configurable width of a second
table of the plurality of tables, the second table imme-
diately preceding the last table of the plurality of tables;
exclude the first candidate set of flow key bits from the
candidate sets of flow key bits to create a remainder
candidate sets of flow key bits;
determine a second candidate set of flow key bit positions
from the remainder candidate sets of flow key bit
positions such that a second sum of a width of the
second candidate set of flow key bit positions and a
width of an output from an immediately preceding table
is less than the minimum configurable width of the
second table of the plurality of tables; and
use the second candidate set of flow key bit positions as
the set of flow key bit positions corresponding to the
second table of the plurality of tables.
19. The router of claim 11, wherein the processor is
further configured to:
identify a new rule to be added to the multi-stage for-
warding table, the new rule including a new flow key
and a new action;
divide the new flow key into a plurality of proposed
lookup key bits, each of the plurality of proposed
lookup key bits including bits from the new flow key
selected from a corresponding set of flow key bit
positions of the plurality of sets of flow key bit posi-
tions;
for each of the plurality of tables:
create a new entry having a new lookup key and a new
output, the new lookup key including the respective
proposed lookup key bits, if the respective proposed
lookup key bits are not found in a lookup key in any
of the respective entries,
wherein creating a new entry in the last table of the
plurality of tables includes storing the new action
included in the new rule as the new output of the new
entry in the last table.
20. The router of claim 11, wherein the processor is
further configured to:
identify a rule to be deleted from the multi-stage forward-
ing table, the rule including a candidate flow key and a
candidate action;
divide the candidate flow key into a plurality of proposed
lookup key bits, each of the plurality of proposed
lookup key bits including bits from the candidate flow
key selected from a corresponding set of flow key bit
positions of the plurality of sets of flow key bit posi-
tions;
for each of the plurality of tables:
identify an entry having a lookup key that includes the
respective proposed lookup key bits, and
delete the identified entry if the lookup key of the
identified entry is not shared with another rule.
21. The router of claim 11, wherein the memory is a
tertiary content addressable memory (TCAM).

#* #* #* #* #*

